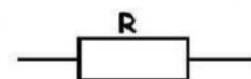
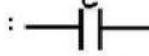

RLC forcée

Exercice

Au cours d'une séance de travaux pratiques, on dispose du matériel suivant :

- Un oscilloscope bicourbe .


- Un générateur basse fréquence (G) pouvant délivrer une tension sinusoïdale :


$u(t) = U_m \sin(2\pi Nt + \phi_u)$ de fréquence N réglable ;

$u(t)$ étant exprimée en volts .

- Un résistor de résistance R :

- Un condensateur de capacité C :

(B)

- Une bobine (B) d'inductance L et de résistance propre r :

- Des fils de connexion .

Un générateur basse fréquence (G) impose aux bornes de ce circuit une tension sinusoïdale $u(t) = U_m \sin(2\pi Nt)$ de fréquence N variable et d'amplitude U_m maintenue constante .

Soit $u_c(t)$ la tension aux bornes du condensateur . Un oscilloscope convenablement branché permet de visualiser simultanément les tensions $u(t)$ et $u_c(t)$.

1°) Indiquer sur la figure - 3- de la page - 5/5- « à remplir par le candidat et à remettre avec la copie » les connexions à établir avec l'oscilloscope bicourbe afin de visualiser $u(t)$ et $u_c(t)$.

2°) Pour une fréquence N_1 , l'ampèremètre indique un courant d'intensité efficace de valeur $I_1 = 2\sqrt{2} \cdot 10^{-2} \text{ A}$ et l'oscilloscope fournit deux oscillogrammes (S) et (S') représentés sur la figure - 4- .

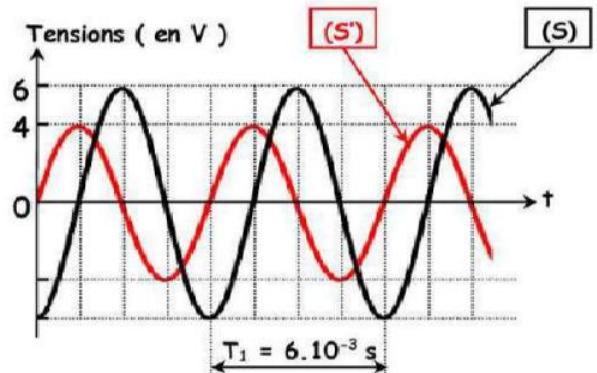


Figure -4-

a) Montrer que l'oscillogramme (S) correspond à la tension $u_c(t)$.

b) Déterminer l'amplitude U_m de la tension $u(t)$, l'amplitude U_{cm} de la tension $u_c(t)$, la fréquence N_1 et le déphasage de $u(t)$ par rapport à $u_c(t)$.

Déduire la valeur de la capacité C .

c) Le circuit est-il inductif , capacitif ou équivalent à une résistance pure ?

d) Calculer alors le facteur de surtension Q et déduire la nature du phénomène qui se produit aux bornes du condensateur .

3°) A partir de cette valeur N_1 , on fait varier la fréquence N de la tension excitatrice $u(t)$ jusqu'à rendre cette dernière en avance de $\frac{\pi}{6}$ par rapport à $i(t)$.

La nouvelle fréquence est $N_2 = 204,5$ Hz et l'ampèremètre indique un courant d'intensité efficace de valeur $I_2 = 2,43 \cdot 10^{-2}$ A.

a) Dire, en le justifiant, si le circuit est inductif ou capacitif.

b) L'équation reliant $i(t)$, sa dérivée première $\frac{di(t)}{dt}$ et sa primitive $\int i(t)dt$ est :

$$Ri(t) + ri(t) + L \frac{di(t)}{dt} + \frac{1}{C} \int i(t)dt = u(t).$$

Nous avons tracé sur la page 5/5 deux constructions de Fresnel incomplètes (figure-5-a et figure-5-b).

Montrer, en le justifiant, laquelle parmi ces deux constructions celle qui correspond à l'équation décrivant le circuit.

c) Compléter la construction de Fresnel choisie en traçant, dans l'ordre suivant et selon

l'échelle indiquée, les vecteurs de Fresnel représentant $ri(t)$, $\frac{1}{C} \int i(t)dt$ et $L \frac{di(t)}{dt}$.

d) En déduire les valeurs de R , de r et de L .

A remettre avec la copie

Nom et prénom :

Classe :

N° :

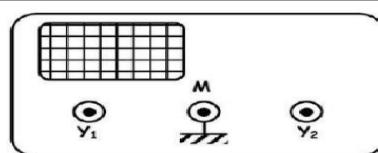
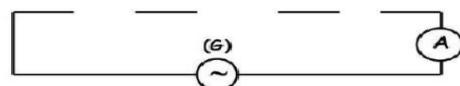



Figure -3-

Echelle :

2 cm \longleftrightarrow 1 V

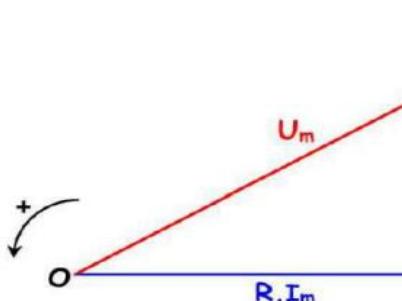


Figure-5-a

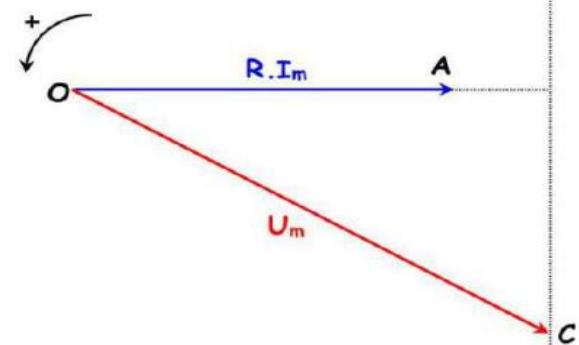
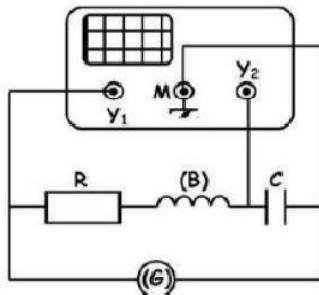



Figure-5-b

Correction

1°)

2°) a) $u_C(t) \rightarrow (S)$ car $u_C(t)$ est toujours en retard par rapport à $u(t)$

b) $U_m = 4 \text{ V}$

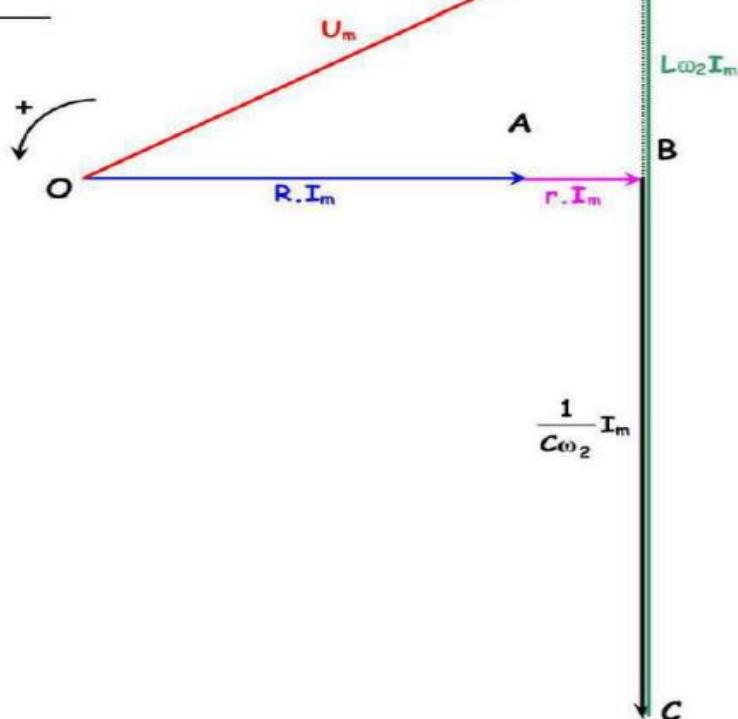
$U_{cm} = 6 \text{ V}$

$N_1 = \frac{1}{T_1}$ soit $N_1 = 166,67 \text{ Hz}$

$\varphi_u - \varphi_{uc} = \frac{\pi}{2} \text{ rad}$

b) $U_{cm} = \frac{1}{C \omega_1} I_m \Rightarrow C = \frac{\sqrt{2} I_1}{2 \cdot \pi \cdot N_1 \cdot U_{cm}}$ soit $C = 6,37 \cdot 10^{-6} \text{ F}$

c) $\varphi_u - \varphi_i = (\varphi_u - \varphi_{uc}) + (\varphi_{uc} - \varphi_i) = \frac{\pi}{2} + (\varphi_q - \varphi_i) = \frac{\pi}{2} - \frac{\pi}{2}$ soit $\varphi_u - \varphi_i = 0 \Rightarrow \text{circuit résistif}$


d) $Q = \frac{U_{Cm}}{U_m}$ soit $Q = \frac{6}{4} = 1,5$

$Q > 1 \Rightarrow$ phénomène de surtension

3°) a) $u(t)$ en avance par rapport à $i(t) \Rightarrow$ circuit inductif

b) Circuit inductif \Rightarrow fig-5-a

c)

d) $R.I_m = 2,75 \text{ V} \Rightarrow R = \frac{2,75}{\sqrt{2} \cdot I_2} \text{ soit } R = 80 \Omega$

$AB = 1,4 \text{ cm} \Rightarrow r.I_m = 0,7 \text{ V}$

$$\Rightarrow r = \frac{0,7}{\sqrt{2} \cdot I_1} \text{ soit } r = 20,4 \Omega$$

$$U_{Cm} = \frac{I_m}{2 \cdot \pi \cdot N_2 \cdot C} = \frac{\sqrt{2} I_2}{2 \cdot \pi \cdot N_2 \cdot C} = 4,2 \text{ V} ,$$

donc $BC = 8,4 \text{ cm}$

$CD = 12,4 \text{ cm} \Rightarrow L \cdot \omega_2 \cdot I_m = 6,2 \text{ V}$

$$\Rightarrow L = \frac{6,2}{2 \cdot \pi \cdot N_2 \cdot \sqrt{2} \cdot I_2} \text{ soit } L = 0,14 \text{ H}$$